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ABSTRACT C

The Cauchy problem for the Korteweg-deVries equation (KdV for short)

q t(x,t) + q xx(x,t) - 6q(x,t)qx (x,t) = 0

q(x,0) =Q(x) -

.is solved classically under the single assumption

+ (1 + IxI) 41Q(x) dx <

-for t > 0 via the so-called "inverse scattering method". This approach,
originating with Gardner, Greene, Kruskal, and Miura (91, relates the KdV
equation to the one-dimensional Schrdinger equation:

(**) -f"(x,k) + u(x)f(x,k) = k2f(x,k).

!By considering the effect on the scattering data associated to the
Schrodinger equation (**) when the potential u(x) evolves in t according
to the KdV equation (*), one obtains a linear evolution equation for the
scattering data. The inverse scattering method of solving (*) consists of
calculating the scattering data for the initial value Q(x), letting it evolve

to time t, and then recovering q(x,t) from the evolved scattering data.

Recently, P. Deift and E. Trubowitz [7] presented a new method for
solving the inverse scattering problem (obtaining the potential from its

scattering data). Our solution of the KdV initial value problem uses this
approach to construct a classical solution~under the assumption stated above.
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SIGNIFICANCE AND EXPLANATION

The Korteweg-deVries equation (KdV for short) arises as an approximation

in many problems involving non-linear dispersive waves and has been exten-

sively studied in recent years [1,3-6,9,11-13,15-19,21-28]. One approach to

solving this equation in a more or less explicit fashion is the inverse

scattering method of Gardner, Greene, Kruskal, and Miura [9], which relates

the KdV equation to a one-parameter family of one-dimensional Schrddinger

operators. We solve the Cauchy problem for the KdV equation by this method,

using the inverse scattering theory of Deift and Trubowitz [7]. Previous

authors [5,6,9,22] have done this using Faddeev's version of inverse

scattering (8]; our approach constructs a classical solution under less

restrictive conditions on the initial data. In particular, no smoothness is

assumed. Some aspects of the asymptotic behavior of the solution are also

discussed.
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CLASSICAL SOLUTIONS OF THE KORTEWEG-deVRIES EQUATION

FOR NON-SMOOTH INITIAL DATA VIA INVERSE SCATTERING

Robert L. Sachs

1. Introduction.

In this paper, we construct classical solutions of the Cauchy problem for

the Korteweg-deVries (KdV for short) equation:

r qt + 7xxx- 6qqx = 0, t > 0, x G R
(*

( q(x,0) = Q(x)

via the inverse scattering method of Gardner, Greene, Kruskal, Miura, and

Zabusky (see [9,17]). This approach relies on the intimate connection between

the KdV equation and the one-dimensional Schr~dinger equation with potential

(**) -f"(x,k) + u(x)f(x,k) = k 2f(x,k).

More precisely, if one considers the one parameter family of Schrodinger

operators (parameterized by t) whose potentials satisfy the KdV equation,

then these operators are unitarily equivalent to one another. Moreover, by

considering the so-called scattering data associated to these operators, one

obtains a system of uncoupled, linear equations. The inverse scattering

method of solving the KdV equation consists of first calculating initial

values for the scattering data from the initial potential Q(x), then solving

the linear equations for the evolution of the scattering data, and finally,

recovering the potential q(x,t) at time t from its scattering data.

Sponsored by the United States Army under Contract No. UAAG29-80-C-0041. This
material is based upon work supported by he National Science Foundation under
Grant No. MCS-7927062, Mod. 1.



The first two steps in this procedure are relatively straightforward;

most of the technical difficulty in applying the method arises in the process

of recovering the potential at time t. Previous authors, including Tanaka

[22] and Cohen-Murray 15], used t t inverse scattering theory of Faddeev (8]

to complete this step under suitable hypotheses on the initial data (involving

decay of several derivatives). In a later paper, Cohen-Murray [6] considered

initial data which was continuous with a piecewise continuous first deriv-

ative. Assuming a certain decay rate, she proved the existence of a smooth

solution. Our result does not assume a specific decay rate but rather

requires that the initial data belong to a weighted L space. We make no

assumptions on derivatives of the initial data. In recovering the potential

from its scattering data, we use the recent work of P. Deift and E. Trubowitz

(7) on the inverse scattering problem. One difference between this theory and

Faddeev's is that the so-called trace formula of [7] (see also Newell (19])

expresses the potential itself directly in terms of the scattering data. In

this way, the solution q(x,t) of the KdV equation (*) and the solution

h(x,t) of the linear problem:

f ht + hxxx = 0

h(x,O) = H(x)

are compared directly, where H(x) is related to the scattering data of

Q(x). our analysis consists in large part of solving (1.1) in various

weighted, local L I and L spaces and then using the link between h(x,t)

dnd q(x,t) to extend these properties to q(x,t).

Several other approaches to the KdV initial value problem have been

developed besides the inverse scattering method used here. Saut and Temam

[21] used a parabolic regularization of the KdV equation to establish the
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existence and uniqueness of solutions in the Hilbert spaces Hs for

s > 2. Bona and Smith [4] obtained existence, uniqueness, and continuous

dependence on initial data in Hs for all integers s > 2 using a

regularizing term of order 3 (the so-called regularized long wavelength

equation). Bona and Scott [3], using non-linear interpolation theory,

extended this result to non-integer values of s. These results show that in

the Hilbert spaces Hs, the KdV evolution is not smoothing in the strong

sense but preserves the order of L2-differentiability. Recently, Kato

[12,131, using the abstract theory of quasi-linear evolution equations, proved

5the existence and weakly continuous dependence on initial data in H , s =

0,1, and the weighted Sobolev spaces
H2rr = H2r n L2((r+x2)rdx)

and

H s 0 2, where Lb2 SL2(e 2bxdx)

for b > 0, s > 0.

Kato also shows that in fact, for s > 3/2, an Hs solution belongs to

L2((0,T];HloI), which is a kind of smoothing effect. Other papers on the

Cauchy problem for the KdV equation on the line include [11,18,15-27]. For a

nice survey article, see Miura [17].

Our result, as well as that of Cohen-Murray [5,6], exhibits an interplay

between smoothness and decay in the pointwise and weighted L1 senses. We

remark that these contrasts arise in the linear evolution equation (1.1) as

well as for the KdV equation.
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Before describing our results, we introduce some notation:rr r
(1.2) = [u(x) : (1+lIxl)ru(x) Q LP([a,-)))

Xp  n Lp(a)
r a finite r

will denote LP((- ,c)). Note that Xp  is a Frfchet space with ther r r

obvious topology.

Our principal results are as follows:

Suppose the initial value Q(*) G L I. Then there exists a unique

solution q(x,t) of (*) with the properties:

i) q(x,t) G Xn X0 for every t > 0 and > 0% -3/4-6 a

and t + q(*,t) is continuous in this topology for t > 0.
(i) r s 1X0

(ii) ataxq(*,t) G X s+3r n X ra- 3/4-6- ( s - )- -)s +3r)

(with continuity in t)

(iii) q(x,t) + Q(x) as t + 0

in X for every 6 > 0.

As yet, we do not know how to prove that the solution constructed has the same

asymptotic behavior as x + -0 or as t + +0 (modulo solitons) as the

solution of the linear problem (1.1), although we believe this to be true

(See [i]).

The basic results of inverse scattering theory, including sketches of the

approaches of Faddeev [8] and Deift and Trubowitz (71, appear in Section 2

below. In Section 3, the link between the KdV equation and the Schr~dinger

equation is described and the evolution of the scattering data given. Using

this evolution, the reconstruction of the potential by the Deift-Trubowitz

method is discussed in Section 4. Additional smoothness and decay properties
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of the proposed solution are developed in Section 5, while Section 6 contains

the proof that our solution indeed satisfies the KdV equation.

It is a pleasure to acknowledge helpful conversations with Percy Deift

and Jerry Bona during the course of this work and the support of an A.M.S

Postdoctoral Research Fellowship.

-5-



2. Results From Inverse Scatterinq Theory.

In this section, we sketch the results of the theory of inverse

scattering for the one-dimensional Schr6dinqer equation (7,8] to be used in

studying the KdV initial value problem. Where feasible, the proofs of these

results are described briefly. Our discussion is divided into three parts:

the definition of scattering data for the Schr6dinger equation; Faddeev's

inverse method (81; and the Deift-Trubowitz approach (7]. Our discussion is

for the reader's benefit and contains no new results.

A. The Forward Problem: Defining the Scattering Data; Basic Properties.

Consider the Schr6dinger equation

(**) -f"(x,k) + u(x)f(x,k) = k2f(xk)

on the real line - < x < *i for k real and non-zero. Assuming that the

potential u(x) is real-valued and satisfies the condition:

(2.1) ,up = (1 + fxl)u(x)?dx <=
L 1 -

we construct the Jost solutions f (x,k) of (**) as follows:

Solve the Volterra integral equations:

( 2ik(y-x)

m+(x,k) = 1 + 2ik u(y)m (y,k)dy

(2.2) X
mxk)=i x e- e2ik(y-x)- 1)

(xk) + f 2ik u(y)m_(v,k)dy

for m±(x,k) and then define

(2.3) f (xk) = e±likxm(x,k).

Condition (2.1) arises when estimatinq the terms in parentheses by ly-xl,

obtaining a bound independent of k. Then f (x,k) satisfy the
±t

Schr'&dinqer equation (**) and have the asymptotic behavior
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F ikx
f +(x,k) ~ P as x +

-i kxf (x,k) - e as x + .M.

Since u(x) and k are real, f (x,k) = f (x,-k) are also solutions of

(**). (2.4) implies f+(x,k) and f+(x,-k) are linearly independent for

k t 0 (and similarly for f_) since

[f+(x,k),f+(x,-k)] = [f_(x,-k),f_(x,k)] = 2ik.

Thus there are functions T±(k),R (k) defined for real, non-zero k by the

relations:
R (k)1 +

f (x,k) = f (x,-k) + + f (x,k)
T +(k) + T +(k) ++ +

(2.5)

f+ (x,k) = T (k) f_(x,-k) + T f_(x,k).

Takinq Wronskians as above, we obtain:

( 2ik 2ik

(k) = Tk= [f (x,k),f (x,k)]
T (k) -T(k) +

2ikR (k)(2.6) = f (x,k),f (x,-k)]
T() - +

+

2ikR (k)
T(k) = 

f -(x,-k),f (xk)]
_( ) f- +

T ±(k) is called the transmission coefficient; R±(k) are the reflection

coefficients. The scatterinq matrix, S(k), is given as:

T+(k) R_(k)

(2.7) S(k) =

R+(k) T_(k)

and is well-defined for real k * 0.
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The properties of the scattering matrix are summarized in the following:

Lemma 2.1. (c.f. Theorem 2.1 of [7]) The scattering matrix, S(k), has the

following properties:

i) S(k) is continuous for all real k 0 0. Moreover, if

Us1, (1 F c + lxt)2,u~x) ldx <
L2  -2

then S(k) is also continuous at k = 0.

(ii) T+ (k) = T_(k) = T(k)

(iii) T(k) = T(-k); R (k) = R (-k)

(iv) T(k)R (k) + R (k)T(k) = 0;-+

TCk)I 2 + IR+Ck)I 2 = IT(k)I 2 + JR(k) 12

= 1.

Thus JT(k)j, IR±(k)l • 1.

Moreover, S(k) is unitary.

(v) T(k) extends meromorphically in the upper half-plane Im k > 0.

T(k) has a finite number of simple poles at k = i81,.,i n

where each 8 is a real, positive number; the residue of T(k)
J

at k = i. isJ
f-1

it J f+(x,iS.)f (x, i )dx]

2 2 . . 2
-1 -a2' "_ a n are the eigenvalues (bound state energies) of

the Schrodinger operator. In Im k ) 0, T(k) is continuous

away from 0,i1-, (if u G L1, then T(k) is continuous
n 2

at k = 0 as well).
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(vi) T(k) = 1 + 0(1/k) as Ikl + , Im k > 0.

R+(k) = o(1/k) as IkI + -, k real.

Moreover, if u(x) has £ derivatives in L I ,

R(k) = o( as IkI + -, k real.

Also, if there are no eiqenvalues,

T(k) - 1 G H2+ (Hardy space)

and IT(k)I '. 1 for all Im k > 0.

(vii) IT(k)i > 0 for all k 0, Im k > 0.

IKI < CIT(k)I as k- 0;

If u(x) G L then either:
2

(a) 0 < C 1 IT(k)I; IR ±(k)l 4 C2 < 1

or

(b) T(k) = cxk + o(k) as k + 0, Im k ) 0;

R (k) = -1 + y k + o(k) as k + 0, k real.+ ±

Most of these properties are direct consequences of (2.5), (2.6) and the

relation f (x,k) = f (x,-k). The remainder come from careful analysis and± ±

the inteqral representations (derived from (2.2) and (2.5)):

2ikR +(k) = f -e _T(k) 2i e kYu (y)m (y,k)dy

2ikR)(k)

(2.8) 2ikR(k) = fe 2ikYu(y)m (y,k)dy
T(k) CO+

I = 1 - 2i u(y)m (y,k)dy.

2ikR (k)

Note that the functions ±(k) look like Fourier transforms of theT(k)

potential u(v), aside from the factors m (y,k). For a full proof of Lemma

2.1, see (7].
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In (7], it is also proved that m (x,k) - 1, considered as functions of

k, belong to the Hardy space H2 . The Fourier transform of m (x,k) - 1

with respect to k plays an important role in inverse scattering theory.

As remarked in [8], the reflection coefficient R+(k) (or R.(k)) and

the values 0 ,* n are sufficient to uniquely determine the entire

scattering matrix S(k). Namely, since IT(k)J 2 = 1 - IR+(k)12  for k real,

given R (k) we know IT(k)l for k real. Multiplying by the product

n k-is. n k-io
n i to remove poles, we recover T(k) I H ki by exponentiating

j=1 j=l k+i

the Cauchy integral for its logarithm. Then R_(k) is obtained via property

(iv) in Lemma 2.1 above.

Given R +(k) and n',,8n, does this determine the potential u(x)?

It turns out that n additional pieces of information are needed. Typically,

one specifies the so-called norming constants, cj, defined by

(2.9) Ci f j x,i.)dx.

Given R +(k)lk G R), ' and c ,",c n, which we call the

scattering data, the potential u(x) is unique (Levinson's Theorem). The

basic goal of inverse scattering theory is to describe how one obtains the

potential from its scattering data.
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B. Faddeev's Inverse Scattering Theory.

We describe briefly one method of constructing the potential from its

scattering data. This approach, due to Faddeev (8], is based on work of

Gel'fand and Levitan [10], Kay and Moses [141, and Agranovich and Marchenko

[2). A linear integral equation for B ±(x,y), the Fourier transform of

m±(x,k) - 1, is solved and u(x) obtained by the relation:
xa + X -(2.10)u(x) = - WB+(x,0 + ) =- ).x,

More precisely, define
1 -n -2 8y

(2.11) (y) = R(k)e dk + 2 1 c.e
+-T j=1 I

The integral equation for B +(x,y), y > 0, (often called the Gel'fand-

Levitan-Marchenko equation) is:

(2.12) B+ (x,y) + a (x+y) + fo+(x+y+z)B (xz)dz = 0.
0

A similar equation for B_(x,y), y < 0, holds where
I 2iky n 2 2,8 y

(y) - f R (k)e-2 kYdy + 2 ce- _o j =1

(2.13)

C-1  f2 (x,io)dx.

We remark that (2.10) follows from the Fourier transform version of (2.2),

while (2.12) is the Fourier transform of (2.5) when suitably expressed.

Since we will not use the Faddeev approach to the inverse scattering

problem, we do not discuss the solvability of the Gel'fand-Levitan-Marchenko

equation (2.12) or the properties of the potential obtained by this method.

The interested reader is referred to Faddeev [8] and Deift arid Trubo4itz [71

for more information on this theory, and to the works of Gardner, Greene,

Kruskal, and Miura [91, Tanaka (22], and Cohen-Murray [5,6] for its

application to the KdV initial value problem. We merely note that recovery )f
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the potential u(x) via (2.10) does not provide a simple means of obtaining

pointwise estimates for u(x) in terms of R+ (k), as it involves finding

B+(x,y) and differentiating.

C. The Deift-Trubowitz Inverse Scattering Theory.

Recently, P. Deift and E. Trubowitz (7] presented a rather different

approach to the inverse scattering problem. The key to their method is the

following 'trace formula' (see also Newell (19])
k R n

(2.14) u(x) =+(kle m+(x,kldk - 4j 8 (ni2 .

7F kR + e m (x~~d - 1 c j + )xi

Note that (2.14) expresses the potential u(x) directly in terms of the

squares of the Jost functions, so that the Schr~dinger equation may be thought

of as a coupled system of second-order ordinary differential equations with

the singular boundary value m +(x,k) - 1 as x + +0 given. This is the

basic idea in the Deift-Trubowitz approach. Carrying out this program

involves a number of technical questions, which we do not discuss in any

detail here. However, for the reader's benefit and as an orientation for

Section 5 below, we indicate the principal issues.

First of all, it is technically convenient to restrict attention to

potentials without bound states. In Section 3 of [7], a spectral version of

Crum's algorithm is used to add or subtract bound states. Thus the problem of

recovering potentials with bound states from the scattering data is in

principle reducible to the case of potentials without bound states. The

method of reduction is based on commutation ofthe operator A A where A is

closed. In particular, suppose Q(x) is a potential with bound state

2 < _2 2 _2 _2 le
Schrodinger eigenvalues -8n  -2 < ... < -02 . For -$ < -n let

n n-1 1 n

g(x) be a positive solution of
2

(2.15) d_2 + Q(x) + 02)g(x) = 0.

dx 2

-12-



Then it is not hard to verify that, if we define the closed operator A as

(2.16) Af = (g d- g 1 )f

, d2  2

then A A = - - + Q(x) + 2

dx2

, d2  d 2  2
and AA = -- + Q(x) - 2 log g(x) + 8

dx
2  dx

d2  82.
- 2 + P(x) + 2

dx
2

In [7] it is shown that A A and AA have the same spectrum except perhaps

2
for 0. But -82, which was not an eigenvalue for the Schrodinger operator

with potential Q(x), is an eigenvalue for the same operator with potential
d2  1

P(x E Q(x) - 2 - log g(x) with 1 as eigenfunction. This is easily
dx 2  g(x)

*1 d -2ds(-)__ ( - g = 0. Thus P(x) has an extra boundseen since AA )= (-g - g )

2
state eigenvalue -8. This describes how one adds a bound state; reversing

the procedure will remove one. In this process, the scattering data and

eigenfunctions are transformed in a nice way. With Q(.), P(-) as above, the

transmission coefficients, reflection coefficients, norming constants and

eigenfunctions are related as follows:

, k+i 8
T (k) =-- T (k)
P k-i8 Q

R (k) = k--- R (k)
P k-iO Q

A"f (x,i8j)

(2.17) f (X,i8.) 1 .. n
+,P 3

j,P =-0 j,QJ

C = 2(-)TQ(i8)
n+l,P a Q

where we choose g(x) above as

q E t (x,iO) + a f (x,iO) with a > 0.

-13-



Thus any -2 -2 and any Cn+1 > 0 are attainable this way. Moreover, if
nn1

Q() G L so is P( ) for all ii ) 1 and the associated reflection and

transmission coefficients have identical smoothness and decay properties. In

[71, it is also shown that n bound states may be added or removed in one

algebraic procedure. Thus there is no loss of generality in considering

potentials without bound states in the Deift-Trubowitz scheme.

Now consider the Schr'6dinger equation

( m"(x,k) + 2ikm+(x,k) = Q(m ;R)m (x,k)

(2.18)

Sm +(x,k) - 1 as x + 4-

where Q(m+;R) is the right-hand side of (2.14) (with no bound states). Let

2ikx
n+(x,k) = e m;(x,k).

We have the equivalent system:

( -2ikxm+(x,k) = e n +(x,k)

2ikx
(2.19) n+(x,k) = Q(m +;R)e m +(x,k)

m+ 1
m - I

+ 0 as x + 4.

In order to construct solutions to (2.19) on the Banach space

B= {(m,n)Isup (Iml + In!) < a Lipschitz estimate on the vector field in
kGR

(2.19) is established. Then a solution on semi-infinite interval [M,-) is

constructed, for M large, by a contraction mapping argument. Here the

following condition on R+ (k) is used:
1 e ) 2ik

(2.20) The function F (y) = 1f R(k)e kydy
+ I

is absolutely continuous with:

f IF'(y)(1 + IV 2))dv < c(X) < _ for all -< x <.
x

-14-



!F
We remark that this condition is rather natural when working with L2

potentials, since F'(y) and u(y) are quite similar (replace m+ by I
+

and ignore bound states).

One of the main results of (71 is a sharp characterization theorem for

potentials in L 2 . In this class, necessary and sufficient conditions for a

given set of data to be the scattering data of an L potential are given by

the following (Theorem 5.3 of [7]):

Lrs 1(k  $1(k:)

Theorem 2.2. A matrix S(k) = 112(k)  122(k  is a scattering matrix a

real potential u(x) 9 L without bound states if and only if conditions (i)-

(vii) of Lemma 2.1 hold and moreover (2.20) and its analogue for R (k) (as

in (2.13) above) hold.

While this theorem seems to suggest a nice class of potentials for our

problem, the dispersive nature of the KdV equation leads to poor decay of

solutions as x + - for t > 0 [1,6j. Therefore, as in Cohen-Murray (61, we

will reconstruct the solution for t > 0 from x = -w to the left, using the

method sketched above. In this way, the estimate (2.17) is sufficient and no

condition on R_(k) is needed. Our potential will be constructed for every

finite x in this manner. One inherent difficulty is that the "left"

eiqenfunction f_(x,k,t) may not be constructed directly for t > 0 because

of the poor decay of the potential as x + -. Thus the algebraic procedure

for adding or removing bound states is no longer available and we are forced

to include bound state contributions in the Deift-Trubowitz scheme. As we

shall see, this is not a serious problem.
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3. The Inverse Scattering Method for Solving the KdV Equation: Evolution

of the Scatterinq Data.

In a series of papers culminatinq in [9], Gardner, Greene, Kruskal, and

Miura studied the KdV equation

(*)qt + qxxx - 6qqx = 0.

They discovered a remarkable link between this non-linear evolution equation

and the one-parameter family of Schr'odinqer operators
2

(3.1) L(t) = - _ + q(x,t)
dx

2

where q(x,t), the 'potential' in L(t), satisfies the KdV equation. If we

consider the scattering data associated to L(t), namely

(3.2) S(t) E {R (k,t):k G RI u {8j(t),c (t)}
+ J j=1,.'',n

then the time evolution of the scattering data, assuminq a priori that it is

well-defined, is linear and qiven by the followinq well-known formulae:

Lemma 3.1. If q(x,t) evolves according to the KdV equation (*), the

scattering data S(t) given in 3.2 satisfy the equations:
d3

(i) d R (k,t) = 8ik3 R (k,t)
dt + +

d(3.3) (ii) - (t) = 0

d 3
(iii) d 3 c .(t).

Remark. From the discussion of the previous section concerning the

determination of T(k) and R (k) qiven R+ (k) and , aB , it follows

-- n

that

T(k,t) = 0 and - R (k,t) -8ik 3R (k,t).

-16-



We present a proof of Lemma 3.1 due to Tanaka [221, based on the operator

formalism introduced by Lax [16], which is slightly different from the

oriqinal derivation in [9].

As noted by Lax [101, the KdV equation is equivalent to the operator

equation:

(3.4) L(t) = [B,L] = BL - LB
dt

where the operator B is defined as follows (D - dx

(3.5) B = -4D 3 + 3qD + 3Dq.

In the literature, the skew-adjoint operator B is often called the

Lenard operator (after A. Lenard) and equation (3.4) is often referred to as a

Lax pairing. Since B is formally skew-adjoint, it qenerates a unitary

group, so (3.4) implies that L(t) and L(0) are unitarily equivalent for

every t.

Considerinq the family of eiqenvalue problems:

(3.6) L(t)f(x,kt) = k 2f(x,k,t)

and differentiating with respect to t, we find

(3.7) L(t)[ft - Bf] = k2 [ft- Bf].

If f(x,k,t) is a Jost solution f±(x,k,t), where f+(x,k,t) elkx as

+ - or ti kx
X + + for every t fixed and f_(x,k,t) - e as x + - for every

t fixed, then, analyzing the asymptotic behavior of ft - Bf, we find:If+)t - Bf+ = -4ik 3f+

(3.8)

(f-)t Bf_ = 4ik 3 f.

Here we use the assumption q(x,t), qx (x,t) + 0 as 1xl + -, t fixed.

Differentiating the relation (2.5) with respect to t and using (3.8), we

obtain (3.3)(i). (Alternatively, one can differentiate the Wronskians in

(2.6) and obtain this result.) By our previous remark, L(t) is unitarily

-17-



equivalent to L(O), thus O.(t) = 81(0). To obtain (3.3)(iii), we

differentiate f +(x,iejt) = . (t)f (x,i.,t) and use (3.8).4. J - )

An interpretation of the linear flow (3.3) in the context of completely

inteqrable Hamiltonian systems was given by Zakharov and Faddeev [28].

Introducinq a Hamiltonian structure, they show that the variables

P(k) = -k (k)1 2 )

R (k)
Q(k) = arq( T )

(3.9)

p. =2
8.3i j

q. = 2Zn(icj d 1
jdk T (k)) ki

form action-angle variables for the KdV Hamiltonian. In fact, they derive the

expression

3 2 n 5/2
(3.10) Hful = 8 J k P(k)dk - Pt

which is equivalent to (3.3) reexpressed in terms of R(k), c., 8. (the3 3

alternative set of scattering data using normalizations at x =

-28-



4. Recovering the Potential at Later Times.

Shifting our viewpoint somewhat, we now consider the linear flow on the

scattering data induced by the nonlinear KdV equation. We show that under

suitable restrictions, the evolved scattering data is sufficiently "well-

behaved" to permit recovery of an associated potential by the inverse

scattering methods of Section 2 above. To this end, we make the following

definition:

(4.1) A function q(x,t) is called a generalized solution of the KdV equation

(in the sense of inverse scattering theory) for all t ) 0 if it is the

potential corresponding to the scattering data: 3
Beik t 8 .t

(4.2) S(t) - {R+(k,O)e Ik G W u {Bj,cj(O)e 8 S J = 1,,n}

for every t ) 0.

To avoid confusion, the term "weak solution" will be used for solutions

in the sense of distributions and "generalized solution" will always refer to

the notion (4.1). The chief result of this section is the following theorem.

Theorem 4.1. Given Q(x) G L4 , there exists a unique generalized solution

(in the sense of inverse scattering) for t > 0 to the KdV equation

)qt 
+ 
qxxx - 6qqx 

= 
0

with scattering data S(t) as in (4.2) where the initial values, S(0), are

the scattering data for Q(x).

The proof of the theorem consists of three steps, the first of which (our

Lemma 4.2) appears in (71 (Theorem 4.7 and Remark 4.5 thereafter).

[.Pmma 4.2. If Q(x) e L , then the function H(x) defined by

(4.3) H(x) E C M fa 2ik R (k,O)e 2ikxdk
a 11 +

-a

is also in L , where R +(k,O) is the reflection coefficient for O(x)

and C M denotes the Cesaro mean.



For the sake of completeness, we sketch the proof appearing in [7].

Use the following version of the trace formula:

Q(x) = H(x) + 2 fo H(x-y)B(x,y)dy + fc H(x+y)(B*B)(x,y)dy

0 0
(4.4)

n -28.x 2
- 4 c 8.e m (x,i8.)

j=1 ] 3 +
where B(x,y) (resp. B*B) is the inverse Fourier transform (in k) of

M+ (xk) - 1 (resp. (m +(x,k)-1) 2 ), and 8jrj are the jth bound state and

norming constant for Q(x). Recall that, as in Section 2, Q(x) determines

m+ (x,k).

Solving (4.4) by iteration for H(x) leads directly to an estimate of

the form

(4.5) HH(,)I 1 (C(a)NQ(,)PUL1 1

a a

with bounded constants C(a) for all a > 1. Thus Q(.) G L implies
Ct

H(-) G L

Remark. The trace formula (4.4) and its time-dependent generalization will

play an important role in the discussion of Section 5, in which further

properties of the solution constructed in Theorem 4.1 are deduced.

The second step in the proof of Theorem 4.1 concerns the behavior of the
8i3t

Fourier transform of 2ikR +(k,0) * e 8ik t for t > 0 and is crucial to the

analysis of Section 5 below.

Lemma 4.3. The function h(x,t) defined by

(4.5) h(x,t I 2ikR (k,0)e 2ikx+8ik 3tdk

is well-defined for t > 0 and satisfies:
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(i) h(,t) Q X for every t > 0 fixed and every 6 > 0

with t + h(-,t) continuous in this topology

(ii) t + h(.,t) G C(10,c[,D 4

In fact, lim (1 + Ixl) 4h(x,t) = 0 for t > 0 fixed

(iii) h(-,t) 9 L I/4

(iv) All of the above hold for r s h(xt) provided we
tx

(4.6) subtract 1/2 (3r+s) from every lower index (the poly-

nomial weighting) i.e.

a r ash(x,t) G X 1  for every t > 0 fixed
t x 13/4-6 3r+s

2

etc.

(v) h(x,t) 4 H(x) in X as t + 0
3_z

-1/3
(vi) h(x,t)= O(t -  ) as t + 4m for fixed x.I -13/3 f c > 0

(vii) h(ct + ,t) =
O~tI/ 2-- if c < 0

as t + ( fixed).

Remark. (iv) implies that for 3r+s 4 5,

a r as h(x,t) is continuous.t X

Thus h(x,t) is, for t > 0, a classical solution of the linear equation:

(4.7) ht + hxxx = 0

and (v) describes the sense in which the initial data is taken on.

-21-
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Proof of Lemma 4.3. We first note that for potentials in L4 , the

associated reflection coefficient R (k,O) is C3  (see (71). Given t > 0
+

and x, both fixed and finite, we may pick a finite k0  with

k > (1 12 which implies x + 12k 2 t > 0 for Iki k0
0 12t0

Inteqrate (4.5) by parts in Ikl ) k0 , bringing down a factor of x + 12k 2t

in the denominator, to show that the inteqral in (4.5) is well-defined for

any t > 0 and x fixed.

In order to verify the properties of h(x,t), we re-express (4.5), using

(4.3) above to replace 2ikR+(k,0) by the inverse Fourier transform of

H(x). We then have:
1 r" f 2ik (x-y) +Rik 3tyd

(4.8) h(x,t) = f- j H(y)e dydk

where the y-intearal is absolutely convergent and, as remarked above, the

iterated integral converges. Thus h(x,t) is the convolution of H(x) with

the fundamental solution

(4.9) E(x-y,t) -1 f e 2ik(xy)+ak tdk

8iK 
3

2iK( X1/3) +-

:(t1/3 I f- (3t)(3) - e dK

1 3t-/3 x( -y
(3t) Ai((3t)l /

where Ai(z) is the well-known Airy function.
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We shall make use of the following properties of Ai(z) (c.f. [201 for

example):

(a) Ai"(z) = z Ai(z)

(b) IAi(z)I < 1 for all real z

(c) For z ) 0, Ai(z) is a non-neqative, monotone decreasinq

function of z with asymptotic rate of decay proportional to

z 1 /4 - e - , while Ail decays like z + 1/4 e- where

H 2/3 z 3 / 2

(d) As z - -, Ai(z) is hiqhly oscillatory with an algebraically

decaying envelope. In fact,

Ai(z) - Iz1 '{/4cos(Z - iT/4) + o1-)}

ff /2

where Z = 2/3 Iz1 3/ 2,

zl 1 / 4

and Ai'(z) - ii -- {sin(Z - T/4) + O()1}.
Ir /2

Usinq (a), correspondinq estimates on hiqher derivatives of Ai hold.

We now show that (4.6) holds:

(1 + I 13/41 Ih(x,t)ldx

a

(4.11) f + xi) 13/4-6 1 f ' (- )H(y)dyldx= (f' +iCI.l)HIy -yji

a -

where E (3t)1 / 3 > 0, fixed

._ (C + l1xi {3/4-Z I 1fX Ai(-y)H(y)dyj + I- Ai(L_'(y)dvjldx

-~ x

r (l + IxI)13/4" SIh (x,t)I + Ih 2(x,t)l}dx.
a
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Now we have

(4.12) e I + 1. x) 1h (x, t)ldx
a

Sfo(i + IxI)a, fa lAi(.XY)H(y)Idydx + f1+ ll'x~(-)~~dd
CC

a -a a

fa ldy fdxIAi(!~x- 11 H(y)1(1lxl)a' + fdy f dxjAi(~x.)llH(y)j(1+IxI)O
-IM a C)a yC

< fa I()ldy J(l + lxl)aAi(x-a .dx + fOO(1+jyj)"1H(y)jdt f(l+zI)CAi(z/c)dz
-00 a ea 0

We remark that these estimates give a bound on Ih 1(*,t)g for all

a 4 4 uniformly in 0 < t 4 T < by rescaling.a

Similarly,

(4.13) 1+1x I )alh (x,t) Idx = ol x1)'1rIi - IIHy dx
a a x

fJO(l+lxjIjAi(z)l H(x-ez)jdzdx
a -

4 rw fo(1+Ix-czl)alAi(z)llH(X-FEZ)Idzdx (assuming w.k.o.g. a > 0)
a -00

4 f~j~i~zj f' (1+jkl)aIH( )Id~dz
-00 a-ez

< fo jAi(z)j -(1+Ia-ezI )a-4dz .UH(-)II1
-0 L 4(a)

< 'by the decay rate on Ai if a < 13/4.

Note that this is not uniform as e + 0.
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To estimate (I + Ixl)4h(x,t), we proceed as follows (0 < 6 < 1):

(4.14) (I+Ixl)4h~x,t) = (1+1xj 4) xl Ai(x-y)liy~dy
e

+ (1+lxI) 4 F 1 Ai(XZ H(y)dy.
x(1-6) 

e

The second term goes to 0 as x + , since (1+lyl) 4H(y) G L' and

L .  ~~x-y d x B oooiiy
Ai Q L . In the first term, y (1-6)x so - . By monotonicity,

Ai(x y) < Ai(L-), which decays exponentially as x +=. Thus

lim (1+IxI)4h(x,t) = 0 for every t > 0.
X+ +CO

To obtain decay of h(x,t) as x + -0, we make a similar estimate:

(4.15) (1+lxl) 1/4 Ih(x,t)I = (1+lxl)1/41 fx(1-6)1 A(-Y)HydI

+ (1IxI.) 1/4 F. Ai(xjY)H(y)dy.
x(1-d)

As x + -0, the first term is O((1+Ixl) - 13/4 ) since H(e) G while for

the ldtter term (1+xJ) 
I/4 Ai X)j is bounded and H(-) G L Hence

(+Ixl) 1/4 Ih(x,t)l I L- for every t > 0.

The extension of these estimates to x and t derivatives, as well as

their continuity in t for t > 0, follows from the analyticity and

estimates on the Airy function.

Asymptotics in t are derived as follows:

(4.16) (3t) 1/3h(x,t) = f Ai( x-y /H(y)dy.
-0 (3t) 1/3
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Hence, as t + 0 with x fixed (or even varying in a compact set),

(3t)1 /3h(x,t) is bounded, thus h(x,t) = O(t- I 3 ) as t + 4-. Now consider

h(ct+F,t) for c < 0:

ct(4.17) 1(3t)l /3 h(ct+E,t) 1 4 T+ Ailct'-y)H(y)dyl
-(3t) 

1 3

+ I f' Aj(ct+"y )H(y)dyl
ct + (3t)1

/ 3 )

2

ct

22ct -4 2 4
4 (1 + 12- 1) f (l+lyl) I1+(y)ldy

+ sup jAi((-t 1/3) " - (y)ldy

2 2

=O(t-
1 /6 ) as t+ 4- since Ai(x)- IxV-1 /4 as x -

i.e. h(ct+F,t) = O(t - 1/2 ) for c < 0.

Note that this aqrees with the alternate method of estimate, namely stationary

phase analysis of (4.5).

-26-



For c > 0, we have:

ct

(4.18) I(3t)' 3hMct4 )j f 2 Ii(ct+ -y JlI1+(y)Idy
-0 (3t) 3

+r IoAi(ct Y ) 1H4V'Idy
ct (3t) 1 /

3

2

Ct

4 sup I Ai( Z Ij f2  IH(y)fdy
ct (3t) -

2
+ 1 f (1+lyl) 41H(y)ldy o(t- 4),

(1~+ ) {)4 ct

hence we have in this case h(ct+4,t) = o(t - 1 3/ 3 ) as t + 4.

To show that h(x,t) + H(x) in X'_, as t + 0, first we consider (as

usual C E (3t)1 / 3 )

(4.19) f 1/2Ai(y)[H(x-Ey) - H(x)]dy.

Now H(I) G implies that, since translation is continuous,

IIH(x-CFy) - H(x)II = o(licyll) as ICyI+ 0.
1
4

On the qiven interval, lEV E 1/2 while the interval lenqth is 2E-/2.

Thus the expression (4.19) is o(l) as C + 0 as an element in L 4.

Now we have:

-1 1/2
(4.20) h(x,t) = f Ai(y) H(x-Ey)dy

El 1/2

+ Ai(y)H(x-Cy)dy + f Ai(y)H(x-Ey)dy.

1 1/2 -1/2
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1
The first term is estimated in L3 6 (a) by:

/236
(4.21) - IAicy)l(1Ixl) - IH(x-ey)Idydx

a -*

c l1/8 •1"f- /2 ll3-6l(-Y~dd
4 CIl 11e *f f (1+1xj) -IH(x-Ey)Idydx

a .-

clCl1/8 fl(,+Ixl) 3- 6 f, 1/2 H(z ) I .dx
a x+6

c l el1 /8 l+ j l)- -6d x • , H.c . U

a L 4(a)

Now

J I Ai(y)(1+Ixl) 3-6 IH(x-ey)Idydx
a IZ /2

a 1i/2

'.()' F Ai~y)1i(1+1 eyl) 3-6 dy

3-6 1/2

which tends to 0 exponentially fast as C + 0.

Thus 11/2

h(x,t) + lim Ai(y)H(x)dy = H(x)

in X;_' as t 0.

This completes the proof ot Lemma 4.3.
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Remark. If we assume more generally Q(x) G L then H(x) L and the

corresponding results for h(x,t) are:

(4.21) (i) h(°,t) X' n_3/4L /

for t > 0 fixed, with t + h(o,t) continuous for t > 0.

o(t- 1/2 for c < 0

(ii) h(ct+&,t) = ( -o f c
( -- /3 ) for c > 0

(iii) h(°,t) + H(°) in X' as t + +- (& fixed).

In particular, if Q G L with compact support, then h(x,t) is C for

t > 0, h decays faster than any power of x as x + +0 for fixed t and

h decays faster than any power of t in moving frames with c > 0 as

t + +" (c.f. (6]). Better decay as x + -w and in moving frames for

c < 0 is related to additional smoothness of Q(x) and hence H(x).

Using Lemma 4.3 and the results of [7] (c.f. (2.17) above), it follows

that for every t > 0, a potential q(x,t) may be recovered via inverse

scattering starting from +- and solving to the left for every finite x.

Thus a generalized solution (in the sense of inverse scattering) exists and,

for each fixed t > 0, q(*,t) G X'/ * In the next section, we strengthen
13/4-6-

this result to include smoothness and decay of the generalized solution.
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5. Regularity and Decay of the Generalized Solution.

By analyzing the inverse scatterinq method of Deift and Trubowitz [71

more closely, smoothness and spatial decay properties of 
the generalized

solution constructed above will he obtained. The solution behaves quite

similarly to h(x,t), as discussed in Lemma 4.3 above, except for the presence

of a finite sum of "soliton" terms. We shall prove the following theorem.

Theorem 5.1. The generalized solution q(x,t) constructed above satisfies:

(5.1) (w) q(-,t) G X 1/_,n for t > 0

and t + q(o,t) is continuous for t > 0

(ii) a tas q(°,t) 9 X -6 s+3r nX 443r+s
tx 13/4 - ---- J 4(-r+s)

(with continuity in t)

I 1

(iii) q(x,t) + O(x) 
in X 3

Our proof is essentially a parameterized (by t) version of the Deift-

Trubowitz approach to inverse scattering [71, sketched in Section 2 above. we

begin by rewriting the time-dependent analogues of the trace formula (2.14)

and the Volterra equation for m+ (2.2) in terms of b(x,y,t), which is the

inverse Fourier transform of r (x,k,t)-1 with respect to k. Since m+-1

belonqs to the Hardy space H , b(x,y,t) = 0 for y < 0. We have the

Volterra equation

(5.2) h(x,y,t) = f q(z,t)dz + fydz f dw q(w,t)b(w,z,t), y ) 0

x+V 0 x+y-z

and the "trace formula"
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(5.3) q(x,t) = h(x,t) + 2 fo h(x+y,t)b(x,y,t)dy
0

+ f h(x+y,t)(b*b)(x,y,t)dy
0

3
n -20.x+8B.t

h(x,t) h(x,t) - I 4a c.(O)e 3
j=1

where, as in Section 4 above, h(x,t) is the Fourier transform of
S3

2ikR+(k,0)e8ik t (see (4.5) above). Note that the addition of the

exponential terms does not alter the results of Lemmas 4.2, 4.3. We regard

(5.2), (5.3) as the fundamental equations to be solved, and as in (7], we

solve them by iteration to the right of a sufficiently large point (depending

on h(x,t)) and then argue that the solution continues to exist for all

finite x values, by using a local Lipschitz estimate.

One important step in this procedure is to obtain estimates on the

solution of (5.2) if we assume q(x,t) is known. We introduce auxiliary

functions n(x,t), Y(x,t) assuming q(*,t) G X for every t > 0, as

follows:

TI(x't) E f q(y,t)Idy
x

(5.4)
Note) (x,t) E f(y-x)lq(y,t)Idy.

x
Note that n,y are non-increasing functions of x for each fixed t which

are finite for all x > -- and that

fn(y,t)dy = f' dy [" dz lq(z,t)l
x x y

(5.5)

fdzlq(z,t)I(z-x) = Y(x,t).

x

a 1
Similarly, if t q(*,t) G X1, we may introduce
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.I(x,t) f" (y-X)i(y,t)Idy.
x

With these functions thus defined, we prove the analogue of Lemma 2.3 of [7].

Lemma 5.2. If q(*,t) G X for every t ) 0 and .q(.,t) 9 for every

t ) 0, the integral equation (5.2) has a unique solution b(x,y,t)

satisfying:

(5.7) (i) Ib(x,y,t)l (eXt) n(x+y,t)

(ii) b(x,y,t) is absolutely continuous in x and y with

blx ,  + q(x+y,t)j 4 eY(X't)n(x,t) * n(x+y,t)
7Y t)

3b(x,yt) + q(x+y,t)I 4 2e Y(Xt)n(x,t)n(x + y,t)

(iii) b solves the 'wave equation'

2 a2

x-- (xy,t) - 7xy b(x,y,t) = q(x,t)b(x,y,t)

with - a b(x,O ,t) = - a b(x,O+,t) = q(x,t)

(b )e(Xt) ,t eY(Xt)(iv) 1i-(x,y,t)1 4 e {[(x+y,t) + e n(x+y,t)ij(x,t)}

(v) If 1 G for every t > 0 and 0 4 j 4 k

then b has mixed deriatives in x and y up to order

L+I obeying estimates analogous to (ii) above.

Proof. (i), (ii) and (iii) are proved in Lemma 2.3 of [7], so we merely

sketch their proof.

Solving (5.2) by iteration with

(5.8) b(x,y,t) = b (x,y,t)
j=0

b (x,y,t) = J q(z,t)dz
x+y

b. (x,y,t) = fY dz /I dw q(w,t)b (w,z,t)
j+ 0 x+y-z

-32-

. . . .. . . . . _- .. . . . ,_ .. . . .



leads to the inductive estimate (71

lb (XY~t~ (Y~~t))rl(x+y,t)

which proves (i).

Differentiating (5.2) and using the above estimate, we have

(5.10) 1-b(x,y,t) + q(x+y,t)l

I f dz q(x+y-z,t)b(x+y-z,z,t))
0

0ydl~~-~~e-~~-~)nxyt

00

4 eY(x't) )(+tT)Xt

with a similar estimate for the y derivative.

(iii) is a direct calculation.

To establish (iv), differentiate (5.2) with respect to t ,to obtain

(5.11) b(x,y,t) = r - (z,t)dz
x+y

+ f'dz f dw (j t (w,z,t)q(w,t) + b(w,z,,t) a(t)
0 X+y-z

Again we solve by iteration, writing

(5.12) b (x,y,t) = 4.(x,y,t)
t

j=0

4(x,y,t) =fo dz aq(z,t)
0 a

x +y

0 X-y-Z a

3+1(X''t)= fydz f' dw q(w,t); (w'z't).0 x+y-z
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Then 1(x 1 Y~t)I 4 X(x+y,t) + fydz r dwt. q(w,t)Ie1(w't)i(w+z,t)
0 aty-

4 X(x+y,t) + f(x+y,t)w~x,t) *e Y(X~t)

and

(established just as before), which proves (iv). (v) is proved inductively

by applying the same ideas as in (ii) to higher derivatives. Namely, from the

relation

(5.13) (!..)+b(xy,t) + ~-J~~~~

-fy(...j(q(x+y~zt)b(x+yzzt))dz

and estimates on derivatives of q and b of lower order, we can rqadily

estimate ~ t) This completes the proof of Lemma 5.2.

We shall also require estimates on the difference between the functions

b~i (~y~),j = 1,2, corresponding to two potentials qMl)q(2). Define

Sn(x,t) jjql) (y,t) - q ()(y,zfldy
x

(5.14) 6dY(x,t) =*(-~q() yt 2 (y,t)Jdy
x

6A(X~) r aq("'~ t _____~ tld
at yt)- at (~~d

x

6 1J(X,t) fr (YXl Y - (y,t)jdy
x

for notational ease. We have:

Lemma 5.3. (c.f. Lemma 2.4 of (7]) If qM()(x,t), q (2 )(x,t) are two

potentials as in Lemma 5.2 above, then the corresponding solutions

b(2)
b (x~yt), b (x,y,t) of (5.2) satisfy:
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Y (X, t) y2(xt)
1 (I 2(x,t)e

(i( Ib ()x, V,t) - h(2) x,y,t) 1l e 2(5.15)

6n (x+y, t)

y (x,t)
(ii) b(1) (x,y,t) -b(2) (x,y,t)l ( e 6T (x+y,t)

Yi (x,t) +Y 2 (xt)
+ e (2(x+y,t) x6(xtt)

b( I  _ ( 2 )  y 1 ( X , t )  y 2 (X , t )

(x,y,t) - _(x,yt) e (1+Y (x,t)e )

Y2(x,t)

(6 X (x+y,t) + W2 (x,t)e •2 15f(x+yt))

9b ( )  3b ( 2 )

(iv) I t-(xfy,t) - r (xy,t)l 4

Y I(xt) y 2(x,t)
e {6(x+y,t) + e [I2 (x+y,t)61J(x,t)

Y2(t Y2(x,t)

+ 6yY(x,t)e ( (x+y,t) + e 2 2(x+y,t) 2(x,t))]1.

Remark. (i) and (iii) provide L estimates in y while (ii) and (iv)

lead to L estimates for 0 ( V .

Proof of Lemma 5.3. Once aqain we sketch the first two estimates and refer to

f7] for details. Subtractinq (5.2) for b (2 ) from the equation for b ( I) we

have
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(5.16) P(X,y,t) = b(1)(x,y,t) - b (2)(x,y,t)

= j (q(l)(z,t) - q(2) (z,t))dz
x+y

+ fYdz r dq(1) (w,t)(b (1) (w,z,t) - b (2) (w,z,t))

0 x+y-z

+ (q (1)(w,t) - q (2)(w,t))b (wtz,t)}.

Solving for p = P.(x,y,t) leads to the usual inductive estimate
j=0

(Y1(x,t))J

(5.17) IP (x,y,t)I 4 1P (x,y,t)I ( I !

J0 ji

where

(5.18) Po(X,y,t) f (Q(1)(z,t) - q (2) (z,t))dz
x+y

+ JYdz f' dw(q (1)(w,t) - q (2)(w,t))b (2)(w,z,t).
0 x+y-z

Thus

1 0(x,y,t) I f r (1) (zt) - q (2) (z,t)ldz
x+y

y2(w,t)

+ fydz f- dwlq(1)(w,t) - q(2)(w,t)le 22 (w+z,t).
2

0 x+y-z

(i) follows by interchanging the order in the double integral and integrating

n 2(w+z,t) while (ii) comes from using the monotonicity of n 2 which yields

the n 2 (x+y,t) factor.

(iii) and (iv) are derived similarly. Differentiating (5.16) with

respect to t qives
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(5.9) bb (2 )  (2 ) (1)
(5.19) (xy,t) - (xy,t) = (zt -,t) - -(z,t)

x+y

+ fydz f dw 
(w 't) 

( w  z 't -
b +YZ(2)z)]

0 x+y-z I (1) ab (  b+ q (W~) (w~zt) - 5--(w,zt)

q(2)

3q l aq~ (2)

S(q(1)(w,t) - (2) (w,t)) b (2)-(w,z,t)}.

. (1 ) (2)

Solving iteratively for t t again leads to an inductive estimate

involving (Y1 (x,t)) j/jI, but now the leading term is

q .q(1) 3q (2)
(-"t--(z, t) - -- t--(z,t))dz

x+y

Dq((1) (2)( w ' t ) [b  (w,z,t) - b (w,z,t)]
0 fy-z ] d (

0 X+Y -b (2 )
(ld t (2) (w,t) --3- (wt)Jb( 2)(w,z,t)

(1) ( ) a 2
+ (q (w,t) -q Wt)y (wz)

Using (i), (ii) and the estimates of Lemma 5.2, depending on whether we

inte(Irate out the bounds for the b's or take their suprema over z , we

obtain (iii) and (iv) above. This proves the lemma.
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The above lemmas will be used to show, in a manner analogous to (71, that

the mapping

(5.20) q 1 O(q)

given by finding b from q via (5.2) and then defining O(q) from b via

(5.3) is a contraction on a suitable ball in a Banach space. In [7], this space

is {Q(x) : f'IxiIQ(x)ldx < I where a is chosen so that J.IxIIH(x)ldx is
a a

sufficiently small (recall H(x) is the inverse Fourier transform of

2ikR+ (k,0)). Since we are interested in smoothness and decay properties of

our generalized solution, we shall include these in our Banach space.

Before discussing the mapping q + O(q) more fully, we require some

estimates on the relation (5.3), where we regard b(x,y,t) as known.

Lemma 5.4. Suppose functions Y(x,t), n(x,t), X(x,t), U(x,t) exist

satisfying (5.5) and its analogue for X,u and such that the estimates (5.7) (i)

and (iv) hold. Then if q(x,t) is given by (5.3), we have, for every 4 > 0

(5.21) (i) llq(*,t)hI 1 (1 + Y(Mt)e Y(Mrt) . I(M

(ii) Uq(.,t)i (1 + y(M,t)e Y(M't))2 Uh(.,t)U

L (M) L (M)

i U. (.t)U (1+Y(M,t)E Y(M't))2 {jt(.,t)gl
(a)(t ) LI (M) atL (M)

a a

+ 2 (M,t)eY(M't) h(ot)U 1
L (M)

L(M) L(M)

+ 2Y (M, t) (1+y (M,t)eY ('))( I+f (M, t)e(' t)h( , t) i
L (M)

-38-



Proof of Lemma 5.4. From (5. 3),

q(x,t) = h(x,t) + 2 f h(x+y,t)b(x,y,t)dy + f h(x+y,t)(b*b)(x,y,t)dy.

0 0
Thus

(5.22) fgo(1+lxl) a q(x,t)Idx 4 fO(1lIxI)a1lh(x,t)ldx
M M

" f'(14-xI)al2 f' (x+y,t)b(x,y,t)dyldx
M 0

" fr(l+xlc'fl fo C(x+y,t)(b*b)(x,y,t)dytdx
M 0

V Ih(-,t)I + 2 f(1+jxI)o' fool (x+yt: Ie(xt) n (x+yt)dydx

L Q(M) M 0

+ I'(l+IXj)a f Ih(X+y't)Ilb*b(x,y,t)Idydx
M 0

4c Ih tI + 2 rl r(x, t)e Y(x~t) f(1+jx+yl)"lhi(x+y,t)ldydx
L a(M) M 0

+ rY(x,t)n(x,t)e 2y(x~t) fc(1l+y)c'lh(x+y,t)Idydx

y(M't) 2 2YMt
~ ih(,~t (1 + 2-Y(M,t)e + Y (M,t)e

Similarly,

(5.23 Ib(,)I =sup (,+lxl) a lq(x,t)l
L (M) M~x4-

4 sup (lxI)clh(x,t)I + 2 sup (1lxI)cx - Ih*(x+y,t)llb(x,y,t)ciy

+ sup (1 + jxj) fIlh(x+y,t)II(b*b)I(x,y,t)dy

MC.X4000
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Ilh(-,t)I + 2 sup (lxf)a, sup Ih(x+Y't)I Y(x,t)eYXt
L (M) MIx< 04y<os

+sup (1 + IxI)a'- u Ih(X+V't1 * Y xte2Y(x,t)

sup~t 2xt

( Eh(t)I (l+y(x,t)eY(~))
L (M)

aq

To estimate Wt we note that

(5.24) a xt (t)+ 2f 0a(xvtbxytd

+ Jw 2(x+y,t)(b*b)(x,y,t)dy

3b a~~yt
+ f x+v,)W- X,Y,y + f'9.+~)t(b *b)(x, y, t dy.

0 0

The -rt terms are estimated as above, and the - terms are easily seen to

provide the remaining terms in the estimate (5.21)(iii) above.

aq
Finally, we consider :

(5.25) (xt =jqxt + 2 rLxytbxytd

* Jw Lhx+v,t)(h*b)(x,v,t)dv

0 a

* 2 J' h(X+Y't) -(X,y,t)diy

0
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a th
Again the f-x,t) terms lead to estimates with a factor

(1 + Y(M,t)e (M't))2
9b)

The remaining terms (those involving f-) lead to bounds as follows:

(5.26) f(1 +1xI)" f= Ih(x+y,t) I[- x(X,y,t)Idydx
M 0

+ *(1 + Ix I )' f=* 1 (x+y, t) I lb - ab (,y,t)ldydx
M 0 -

< I +xI fI Ih(x+v,t)I{ q(x+y,t) I
M 0

+ e Y(Xt) Ti(x+yt)n(xt)ldydx * (1 + sup O(x,y,t)I)

< fm (1+lXl)g sup 1h(x+y,t)If fIq(z,t)Idz
M OC y<- x

+ e (xt)y(x,t)n(x,t)} , (1+n(x,t)e Y(Xt))dx

f1 (1+Ix{ sup Ih(x+y,t)I - n(x,t)(1+Y(x,t)eY (x't))
M 0 Y4

* (1-4(x,t)e (x't))dx

Y(M~t) y(M~t)h(-,t)N (1+Y(M,t)e M't)(1(M,t)e M  ) • Y(Mt).
L

This completes the proof of Lemma 5.4.

We shall need estimates on the difference between two potentials

q(1)(X),q(2) (x) given by (5.3) from b(1),h (2 ) respectively.

Lemma 5.5. Let b(1),b (2 ) he as in Lemma 5.4 above and satisfy the estimates

(5.15) (i)-(iv). Then if q(J) are given by (5.3) with b h (j ), we have:
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a (1) 3(2)3h

L (M) L ()

H(C) I5(t) -* f(2) t) 1 . M+ C3 &(,t) + 4 (Mt))

2 L (M)

((2)

L (M) L (M)

+ (C 26i~mhe (,,l 1y(M) +36~~)+c46(~)

()

where C%, j = 1,***,5 depend only on Y2.(M~t), n 2 (M~t), 11 91(M,t),

x x (M,t) I. = 1,2.

Proof. From (5.3), we have

(5.28) q (1) (xt) -q (2) (x,t) = 2f' h(x+y,t)(2(b ()(x,y,t) - b (2) (xYt)

0

+ (b (1 ~)- b ()* b(2 )(x,y,t)ldy

whereupon

(1) (2) 00 (1) (2)
(5.29) 11 q (*,t) q d (,t)I f (1+1xj) f Ih(x+y,t)I{21b b I

L a(M) M 0

+ lb (4- 4 b (2 ) * b(2)1}dvdx

Y1(x,t) Y 2 (x,t)

L a(M) M2
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+ IIh(, t)II f(e i (xx t)

L a (M) M f xt

y 2 (X, t) y1 (X, t) Y(x~t)

+ e fl (x, t) )e (1+Y 2(xI t)e 2 )r(x, t)dx

2 2

'tI e (1+Y 2(M, t)e )6y(M,t)[2 +

LCO)

The same idea for L (M) leads to (ii) above. Differentiatingq (5.28) with

respect to t, we have:

a (1)q(
2 )

L(M) L M)

+ 2 fl(l+Ix ) fI(X+Y, t) I 
(IM-b (2)

+ (1)- (2) (1) +b(2) + (1)- (2)
-b *(t +b )+ bt ht

*(b~' + b 2 )I)dydx < I *1 C + 211h(-,t)l1 D

where

D C (Ib~l' (x,t) - b (2) (x,*,t)l .(l+fb(
1 ) ~+ b (2) (, ,,t)u it

M ttL L

(1)(2) (1) (2) d

L

e y 1 (M~t) (+ Mtey 2 (M,t) )1Y(te 
y1 (M,t)

2 2

+ YI(M~t,) ( 1+Y 2 (M,t) 2 ~) Y(D~)
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Yl(M~t) Mt

(e1  u (M,t)(1 + y (M,t)e1(Mt

+ e I2Mt i 2(Z4t)(1+y 2(Mlt)e Y Mt

Differentiating (5.28) with respect to x, we have:

(1) (2)
(5.31) -l-(x,t) - T---(x,t) B210 -- (~~~ (x,y,t)]dy

" +aa .~(X+y,t)(b M*b~l -b ()* b (2Jdy
0N-

" h' (x+y,t)(2(bl)b(2) + 2( 1 ~)- b (2 b () Ody.

Estimating as in Lemma 5.4(iv), we obtain

q(2 ) a Ca(~)

(532 r'0 1 )(2 (1-~) () (2 2

21h(-,t)I j~x j**y~jbM-b 2,+l~)*b 1 2 2

L (M) M 0 *b ))x

(CI2h(.,t)I + 21h(-,t)l f*dx{Ib (1 )(x,*,t) -

(I a

(2) (1*t,(1+lM) +b (2).
b (,tI ( + (bX + (X t)

+ I(bM + b (2 ) )(x, ,t)u H b~1  - b (2 ) (x, *,t) I
x x L IL

(CLh(.,t)I + 2EiH~flt)l 6y(t4,t)
ax L(MW L (M)

where
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E + 1ie +Y 2e 2){(1+y1e )(1+y 2e 2) + Y2e

+ e '(1+y 2e 
2 (Y1 (+y 1 ) +Y 2 (1+Y2)

(for notational ease we have omitted the arguments of y ,Y2 which are

M,t). This tollows from a straightforward estimate on b(I ) -
(2 ) and

x x

completes the proof of the lemma.

we are now ready to prove Theorem 5.1, as we have in fact derived

Lipschitz estimates for the mapping q H O(q), whose Lipschitz constants

depend linearly on various norms of h(x,t).

Proot of Theorem 5.1. Let J be a compact subinterval of it: 0 < t < }.

We define the Banach spaces BM of functions via the norm

lqlM sup s {q("t)U
JjqjjM= up ilat ax 1

tGJ s+3r<6 L13/4-6-(3r+s)/2(M)

+ Ilar asq(-,tO
t x Lm (M)

4- 3r+s )/2

where M will be suitably chosen, as discussed below.

By the estimates of the above lemmas and their direct extensions to the

higher order derivatives contained in the norm above, the mapping q H O(q)

maps [M  into itself tor every M. Moreover, if we consider two functions

ql,q2 in the unit ball of BM (which therefore bounds sup y.(M,t), T1.(M,t),
tGJ

( . by 1), then it is clear that an estimate of the tormlj , J

IIl 1(q 1 - D(q2)111M < K111q I  - q2111 Mlllhl lM

holds, where K > 1 is an absolute constant (involving the maximum of

(-',,E es above). Thus choosing M so that l llhllM <-1, 0 is a strict

coritrac-tlon ini h belongs to the unit ball in BM. Hence on the interval

[M,"), jquation (5.2), (5.3) have a unique solution q(x,t).
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To complete the proof of the Theorem 5.1, we must show that this solution

extends to all finite x and that as t + 0, q(x,t) Q(x) in X3_ . The

continuation argument follows that of [7] and proceeds as follows:

Suppose that a solution of (5.2), (5.3) in BM exists only up to some

finite value of M - i.e. M , the infimum of all M for which a solution

exists for x ; M and belongs to BM, is finite. Then for M = M + E, we

have a solution q(*,t) G B for every e > 0. There is a corresponding
M ,

b(x,y,t) via (5.2). Extend b(x,y,t) for x > M - C as the constant (in

x) function b(M,y,t). Since h(x,t) exists for all x, we can consider

(5.2), (5.3) on the x-interval (M - C,M + C). By arguing as in the above

lemmas, it is easy to show that our system has a unique solution for

b(x,y,t) in a ball relative to b(M,y,t) in a space with norm:

up 1 ) , {as3' b(x,y,t)I + I I

xG[M -C,M +C] 3r+s+06 t x y L L(cc

t~j r<1 (y)()

for C sufficiently small. The corresponding q(x,t) exists for

x > H - C and belongs to B , , which contradicts the definition of
M -t

M * Thus M = -.

The proof that q(x,t) + Q(x) in L _-(M) follows for M sufficiently

large by iteration and for all semi-infinite intervals by continuation as

above. This completes the proof of Theorem 5.1.

We remark that analogous results hold for initial data in L with the

same proofs. Note also that, as an immediate corollary of Theorem 5.1, we

have the result that with LI initial data of compact support, the solution

is C for t > 0 (see [6]).
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6. Verification of the KdV Equation.

In order to prove that our generalized solution constructed above is

indeed a solution of the KdV equation, it is sufficient, as remarked by Tanaka

E19], to prove the following result

Theorem 6.1. bt(x,y,t) + bx (x,y,t) - 3q(x,t)bx(x,y,t) = 0

Proof. The idea is to show, using the Schr~dinger equation and the trace

formula, that bt + b x and 3q bx satisfy the same linear integral

equation, which implies they are equal.

Differentiating the Volterra equation

(6.1) b(x,y,t) = f*q(w,t)dw + f q(w,t)b(w,z,t)dwdz
x+y 0 x+y-Z

we obtain:

(6.2) b t(x,y,t) + b x (x,y,t) =f (q t(w,t) + q w (w,t))dw
X +y

+ fy f'~ [q(w~t)(h t(w~z~t) + b WW(w,z,t))
0 X+y-z

+ (q(w,t) + qwww(w,t))b(w,z,t) + 3(qw(w~t)bw(w,z,t))w]dwdz.

The trace formula

(6.3) q(x,t) = h(x,t) + 2 f h(x+ylt)b(x,ypt)dy
0

+ rh(x+y,t) fyb(x,y-z,t)b(x,z,t)dzdy
0 0

when differentiated (recalling h t+ h =x 0) yields
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(6.4) qt(xt) + q (x,t) = 2 f' H(x+y,t)(b (x,y,t) + b (x,y,t))dy
0 xxx

+ 2 rh(x+y,t) * fYb(x,y-z,t)(b (x,y,t) + b (x,y,t))

0 0 xxx

+ 3 b x(X,y-z,t)b xx(X,y,t)ldzdy

+ 6 a {fQh (x+y,t)[b (X,y,t) + fYb(x,y-z,t)b (x,z,t)dz] * dyl.
0 - 0 x

The estimates of Section 5 ensure the convergence of all these integrals.

Combining (6.2), (6.4), we obtain the following integral equation for

*(x,y,t) b t(x,y,t) + b xxx(X,Y,t):

*(x,y,t) = 2 f' [(h * *)(w,t) + (h * (i * b))(w,t)

(6.5) x+y

+ 3(h * (bw * b ww))(w,t) + 3(h * (bw + b * b w))w (w,t)]dw

+ fY Im [q(wt)*(wzt) + 3(qw(wt)bw(wzt)) w
0 x+y-z

+ 2 b(w,z,t) {(h * W)(w,t) + (h * (, * b))(w,t)

* 3(h * (bw * b ww))(w,t) + 3(hw * (bw + b * b )w(w,t)}]dwdz.

Here we use * to denote both types of convolutions in (6.4) above. Thus it

suffices to show that 3 q(x,t) bx (x,y,t) is also a solution of (6.5).

Making this substitution and dividing by 3, we wish to show:
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(.) q(x,t)b (xFyft) =2 f (h *qb )(w,t) + (h *(qb *b))(w,t)

+ (h * (b w* b ww))(W,t) + (h w* (b w+ b *b w)) w(w,t)]dw

" fy f' fq2 (w,t)b w(w,z,t) + (qlw(wit)bw(wvzut))w

0 )(4y-Z

+ 2b(w,z,t){(h * qb )(w,t) + (h * (qb * b))(w,t)w w

" (h * (b w* b ww))(w,t) + (h w* (b w+ b *b w)) w(wt)}]dwdz

From here on, the proof is a matter of direct calculation, using the following

ingredients:

Ci) if O(x,y,t) G C 2, *+0 as x ++~ then

O(x,y,t) = (X+y,O,t) + fP ' (O - )(w,z,t)dwdz
0 x+y-z

(ii) b ww(W,z,t) = q(w,t)b(w,z,t) + b wz(w,z,t)

(b. 7)

and b w(w,0,t) =b z(w,0,t) = -q(w,t)

(iii) fyu(z)v (y-z)dz =-u(y)v(0) + fr' u(z)v(y-z)dzl.
0 y dy0

Using (6.7)(1) to re-express the left-hand side of (6.6) as

(6.8) -q (x.y,t) + fy r [(q(w,t)b(w,z,t)) -(q(w,t)b(w,z,t)) ]dwdz
0XY ww wz

and using (6.7)(ii) to eliminate bww terms, (6.6) is equivalent to:

(6.9) I(qq) w (p)

where, for any function g(w,t), we define

(6.10) I(g(w,t)) R f g(w,t)dw + fy f' g(w,t)b(w,z,t)dwdz,
x+y 0 x+y-z

and where p(w,t) is given by
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(61) p(w,t) q(w,t)[(h *b w)(w,t) + (h * b)(w,t)

+ 2h *b w )wt+(w b*b(~)

+ 2(h b)(w,t) + (h * b * b)(w,t)]

+ (hw (b bb )(w,t) + (h * (b * Z)(w,t)

+ (h * b * b w)(w,t) + (h * b w* b wz)(w~t).

clearly (6.9) holds if qqW P. Now, the terms in p which do not contain

the factor q may be grouped pairwise. For the first pair, we have:

(6.12) J [h w (w+y,t)b w(w,y,t) + h w (w+y,t)b WY(w,y,t)]dy

=WY

h h (w+yit)b (w,Ylt)(I= h (w,t)q(w,t).

The second pair is: f
f [h ww(w+4y,t) * ~b(w,z,t)b w(w,y-z,t)dz

0 w 0

(6.13)

+ h w(w+y,t) JY b(w,z,t)b WY(w,y-z,t)dz]dy
w 0

f w(h (w+y,t) fyb(w,z,t)b (w,y-z,t)dz) dy

0 0

+- foh (wey,t)b(w,y,t)q(w,t)dy
0

-q(w,t) rh w(w+y,t)b(w,y,t)dy by (6.7)(iii).
0

A similar reduction on the last pair of terms in P implies

(6.14) p(w,t) = q(w,t) [ h w(w,t) + 2(h * b w)(w,t) 4- 2(h w b)(w,t)

+ 2(h * b * b )(w,t) + (h (b * b))(w,t)]
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which by the trace formula (6.3) implies p = q w Thus bt + bxx x -3 qbx

= 0, and our generalized solution of the KdV equation is indeed a bona fide

solution.
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